

Fig. 1. View of $\left[\mathrm{Pt}(\mathrm{bpy}) \mathrm{Cl}_{4}\right]$ with the atom-numbering scheme. Thermal ellipsoids are drawn at the 50% probability level.
the equivalent $\mathrm{Pd}-\mathrm{Cl}$ distances though the same relative trans effects on these distances are observed in each structure.

Least-squares-planes' calculations show that the two rings of the bipyridyl group are essentially planar |all deviations less than 0.04 (2) \AA I, are coplanar, meeting at an angle of $2 \cdot 2(7)^{\circ}$, and that no atoms of the ligand deviate by more than 0.08 (2) \AA from the plane defined by $\mathrm{Pt}, \mathrm{Cl}(3), \mathrm{Cl}(4), \mathrm{N}(1)$ and $\mathrm{N}(2)$.

References

Buse, K. D., Keller, H. J. \& Pritzkow, H. (1977). Inorg. Chem. 16. 1072-1076.

Gray, L. R.. Gulliver, D. J., Levason, W. \& Webster, m. (1983). J. Chem. Soc. Dalton Trans. pp. 133-141.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Osborn, R. S. \& Rogers, D. (1974). J. Chem. Soc. Dalton Trans. pp. 1002-1004.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1986). C42, 51-53

A 1:1 Complex between 1,4,7,10,13,16-Hexaoxacyclooctadecane (18-Crown-6) and Mercury(II) Iodide

By David A. Pears and J. Fraser Stoddart
Department of Chemistry, The University, Sheffield S3 7HF, England
John Crosby
Organics Division, Imperial Chemical Industries PLC, Blackley, Manchester M9 3DA, England
and Billy L. Allwood and David J. Williams
Department of Chemistry, Imperial College, London SW7 2A Y, England

(Received 1 April 1985; accepted 10 September 1985)

Abstract

C}_{12} \mathrm{H}_{24} \mathrm{O}_{6} \cdot \mathrm{HgI}_{2}, \quad M_{r}=718 \cdot 7\), monoclinic, $C 2 / m, a=13.049$ (5), $b=11.241$ (3), $c=9.285$ (2) \AA, $\beta=134.89(3)^{\circ}, \quad V=965 \AA^{3}, \quad Z=2, \quad D_{x}=$ $2.47 \mathrm{~g} \mathrm{~cm}^{-3}, \quad$ Cu $K \alpha, \quad \lambda=1.54178 \AA, \quad \mu=410 \mathrm{~cm}^{-1}$, $F(000)=660$, room temperature, $R=0.036$ for 558 unique observed reflections with $\left|F_{o}\right|>3 \sigma\left(\left|F_{o}\right|\right)$. The complex has crystallographic $2 / m$ symmetry and approximate molecular $D_{3 d}$ symmetry. The structure is composed of linear HgI_{2} entities inserted normal to the mean plane of the macrocycle with the Hg atom positioned at its centre. The coordination of the Hg atom is hexagonal bipyramidal with axial $\mathrm{Hg}-\mathrm{I}$ bond distances of 2.622 (1) \AA and a mean equatorial $\mathrm{Hg} \cdots \mathrm{O}$ distance of 2.86 (2) \AA. The accommodation of the large Hg atom within the macrocycle results in a significant

increase in the magnitude of the $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ torsional angles from the values normally observed in complexes of 18 -crown- 6 in which the ligands adopt the all-gauche conformation with pseudo $D_{3 d}$ symmetry.

Introduction. During our recent investigations (Allwood, Crosby, Pears, Stoddart \& Williams, 1984) on the complexation of sulfonium cations by 18 -crown-6 (18C6), we attempted to isolate a $2: 1$ crystalline complex between $\mathrm{MeSPh}_{2}^{+} . \mathrm{HgI}_{3}^{-}$and 18 C 6 from MeOH . In fact, the first crystals we isolated corresponded to a $1: 1$ complex between HgI_{2} and 18C6, indicating that $\mathrm{MeSPh}_{2}^{+} . \mathrm{HgI}_{3}^{-}$had disproportionated to $\mathrm{MeSPh}_{2}^{+} . \mathrm{I}^{-}$and HgI_{2} under the conditions of the crystal-growing experiment. In view of the
© 1986 International Union of Crystallography
interest which is currently being shown in the solid-state structures of $\left[\mathrm{CdCl}_{2} .18 \mathrm{C} 6\right]$ and $\left[\mathrm{HgCl}_{2} .18 \mathrm{C} 6\right]$ (Paige \& Richardson, 1984) and their dibenzo-18-crown-6 (DB18C6) analogues (Kawasaki \& Matsuura, 1984), in addition to the previously described (Malmsten, 1979) crystalline $1: 1$ complexes of CdI_{2} and HgI_{2} with 1,4,10,13-tetraoxa-7,16-diazacyclooctadecane (DA18C6), we now report on the fortuitous isolation and crystal structure of [$\left.\mathrm{HgI}_{2} \cdot 18 \mathrm{C} 6\right]$.

Experimental. A solution of $\mathrm{MeSPh}_{2}^{+} \cdot \mathrm{HgI}_{3}^{-}(200 \mathrm{mg})$ in warm MeOH (15 ml) was added to a solution of 18 C 6 (34 mg) in $\mathrm{MeOH}(5 \mathrm{ml})$. The solution was allowed to stand at room temperature for 2 h and the resulting crystals initially isolated were found to be suitable for X-ray structural investigation. Crystal size $0.05 \times$ $0.05 \times 0.05 \mathrm{~mm}$. Refined unit-cell parameters obtained by centring 18 reflections. Nicolet $R 3 m$ diffractometer. 721 independent reflections $\left(\theta \leq 50^{\circ}\right)$ measured, $\mathrm{Cu} K \alpha$ radiation (graphite monochromator), ω scan; $558\left[\left|F_{o}\right|>3 \sigma\left(\left|F_{o}\right|\right)\right]$ considered observed, index range $h-14 / 10, k 0 / 12, l 0 / 10$; two check reflections measured every 50 reflections, net count constant; Lorentz and polarization corrections, numerical absorption correction (max. and min. transmission factors, 0.30 and $0 \cdot 10$) for face-indexed crystal. Structure solved by heavy-atom method; non-hydrogen atoms refined anisotropically; positions of H atoms calculated ($\mathrm{C}-\mathrm{H} \quad 0.96 \AA$); H atoms assigned isotropic thermal parameters, $U(\mathrm{H})=$ $1 \cdot 2 U_{\text {eq }}(\mathrm{C})$, and allowed to ride on parent C atoms. An empirical extinction correction was applied $[g=$ 0.0012 (2)]. Refinement using F magnitudes by blockcascade full-matrix least squares; $R=0.036 ; w R$ $=0.039\left[w^{-1}=\sigma^{2}(F)+0.0003 F^{2}\right] ;(\Delta / \sigma)_{\max }=0.002$; residual electron density in difference map within -1.0 and +0.82 e \AA^{-3}; atomic scattering factors and dispersion corrections from International Tables for X-ray Crystallography (1974). Computations carried out on an Eclipse S140 computer using the SHELXTL program system (Sheldrick, 1983).

Discussion. Table 1* lists the fractional atomic coordinates of the non-hydrogen atoms, Table 2 the bond lengths and angles and the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ torsional angles in 18C6.

The structure of [$\mathrm{HgI}_{2} .18 \mathrm{C} 6$] is illustrated in Fig. 1, which also shows the atomic numbering scheme. Fig. $2 \dagger$ shows a space-filling representation of the complex.

[^0]There are several examples of 18C6 (Paige \& Richardson, 1984; Kawasaki \& Matsuura, 1984), DA18C6 (Malmsten, 1979), and DB18C6 (Henrick, Matthews, Podejma \& Tasker, 1982; Crowder, Henrick, Matthews \& Podejma, 1983), and of the cis-cisoid-cis and cis-transoid-cis isomers of dicyclo-hexano-18-crown-6 (Hughes \& Truter, 1983) forming complexes with guest molecules such as $\mathrm{CdCl}_{2}, \mathrm{HgCl}_{2}$, HgI_{2}, and TlMe_{2}^{+}, threaded through the centre of the

Table 1. Atom coordinates ($\times 10^{4}$) and temperature factors $\left(\AA^{2} \times 10^{3}\right)$ with e.s.d.'s in parentheses

	x	y	z	$U_{\mathrm{eq}}{ }^{*}$
Hg	0	0	0	$39(1)$
I	$-2758(1)$	0	$-3399(2)$	$55(1)$
$\mathrm{O}(1)$	$-486(13)$	0	$2572(18)$	$47(9)$
$\mathrm{C}(2)$	$-1247(14)$	$1057(13)$	$2204(20)$	$56(11)$
$\mathrm{C}(3)$	$-435(17)$	$2101(14)$	$2501(21)$	$63(12)$
$\mathrm{O}(4)$	$-632(9)$	$2195(7)$	$793(13)$	$51(7)$
$\mathrm{C}(5)$	$146(17)$	$3138(12)$	$957(24)$	$66(12)$

[^1]Table 2. Bond lengths (\AA), bond angles $\left({ }^{\circ}\right)$, and torsion angles $\left(^{\circ}\right)$

$\mathrm{Hg}-\mathrm{O}(1)$	$2.871(21)$	$\mathrm{Hg}-\mathrm{O}(4)$	$2.858(10)$
$\mathrm{Hg}-\mathrm{I}$	$2.622(1)$	$\mathrm{O}(4)-\mathrm{C}(5)$	$1.401(22)$
$\mathrm{O}(1)-\mathrm{C}(2)$	$1.426(19)$	$\mathrm{C}(3)-\mathrm{O}(4)$	$1.420(27)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.471(25)$	$\mathrm{C}(5)-\mathrm{C}\left(5^{\prime}\right)$	$1.531(50)$
$\mathrm{O}(4)-\mathrm{Hg}-\mathrm{O}\left(4^{\prime \prime}\right)$	$119.4(6)$	$\mathrm{O}(4)-\mathrm{Hg}-\mathrm{O}\left(4^{\prime}\right)$	$60.6(6)$
$\mathrm{O}(1)-\mathrm{Hg}-\mathrm{O}\left(4^{\prime}\right)$	$119.2(3)$	$\mathrm{I}-\mathrm{Hg}-\mathrm{O}\left(1^{\prime}\right)$	$85.4(2)$
$\mathrm{O}(1)-\mathrm{Hg}-\mathrm{O}(4)$	$60.8(3)$	$\mathrm{I}-\mathrm{Hg}-\mathrm{O}\left(4^{\prime}\right)$	$95.2(1)$
$\mathrm{I}-\mathrm{Hg}-\mathrm{O}(1)$	$94.6(2)$	$\mathrm{I}-\mathrm{Hg}-\mathrm{O}(4)$	$84.8(1)$
$\mathrm{I}-\mathrm{Hg}-\mathrm{I}^{\prime}$	180.0	$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}\left(2^{11}\right)$	$112.9(19)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$109.5(16)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(4)$	$108.1(12)$
$\mathrm{C}(3)-\mathrm{O}(4)-\mathrm{C}(5)$	$112.9(12)$	$\mathrm{O}(4)-\mathrm{C}(5)-\mathrm{C}\left(5^{1}\right)$	$107.8(9)$

$\mathrm{C}\left(2^{1}\right)-\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-176.7(10)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(4)$	$75.4(15)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(4)-\mathrm{C}(5)$	$-177.6(13)$
$\mathrm{C}(3)-\mathrm{O}(4)-\mathrm{C}(5)-\mathrm{C}\left(5^{\prime}\right)$	$179.6(14)$
$\mathrm{O}(4)-\mathrm{C}(5)-\mathrm{C}\left(5^{1}\right)-\mathrm{O}\left(4^{1}\right)$	$-74.6(15)$

Symmetry code: (i) $-x, y,-z$; (ii) $x,-y, z$.

Fig. 1. Side view of the $1: 1$ complex and the atomic numbering scheme.

Fig. 2. Space-filling representation of $\left[\mathrm{HgI}_{2} \cdot 18 \mathrm{C} 6\right]$.
macrocyclic ring, i.e. they have rotoxane-like structures. Of particular note are the closely related 18C6 complexes (Paige \& Richardson, 1984; Kawasaki \& Matsuura, 1984) with CdCl_{2} and HgCl_{2}, and the DA18C6 complex (Malmsten, 1979) with HgI_{2}, where the gross structural features of the $1: 1$ complexes are analogous to that of [$\left.\mathrm{HgI}_{2} \cdot 18 \mathrm{C} 6\right]$. The present structure provides another example of the relatively rare hexagonal-bipyramidal geometry. The $\mathrm{Hg}-\mathrm{I}$ bond distances $[2.622(1) \AA]$ are the same as those observed by Jeffrey \& Vlasse (1967) in HgI_{2}, but significantly shorter than the value of 2.680 (1) \AA reported by Malmsten (1979) for [HgI_{2}.DA18C6]. The $\mathrm{Hg} \cdots \mathrm{O}$ distances and the $\mathrm{I}-\mathrm{Hg} \cdots \mathrm{O}$ angles (Table 2) do not depart significantly from those reported (Paige \& Richardson, 1984) for [HgCl_{2}. 18C6]. A consequence of the accommodation of a large Hg atom at the centre of the 18C6 macrocycle is an increase in the magnitude of the mean $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ torsional angle [75(2) ${ }^{\circ}$, $c f$. the 'normal' value of $\mathrm{ca} 65^{\circ}$ (Goldberg, 1980).

Surprisingly, although the title complex as a whole has within statistical significance $\overline{3}$ symmetry and
adopts a very similar packing arrangement to that reported by Paige \& Richardson (1984) for [$\left.\mathrm{HgCl}_{2} \cdot 18 \mathrm{C} 6\right]$ and $\left[\mathrm{CdCl}_{2} .18 \mathrm{C} 6\right]$, the crystals are not rhombohedral. This may be a consequence of accommodating covalently larger I atoms in the structure in place of Cl atoms. In fact, the unit-cell parameters initially chosen by Paige \& Richardson (1984) for a C-face-centred cell of $a=10.44, \quad b=11.46, \quad c=$ $7.75 \AA$, and $\beta=82.21^{\circ}$ are all different from the present C-face-centred cell.

We thank the Science and Engineering Research Council, the Agricultural and Food Research Council, and Imperial Chemical industries PLC for financial support.

References

Allwood, B. L., Crosby, J., Pears, D. A., Stoddart, J. F. \& Williams, D. J. (1984). Angew. Chem. Int. Ed. Engl. 23, 977-979.
Crowder, J., Henrick, K., Matthews, R. W. \& Podejma, B. L. (1983). J. Chem. Res. (S), pp. 82-83.

Goldberg, I. (1980). The Chemistry of Functional Groups. Supplement E. The Chemistry of Ethers, Crown Ethers, Hydroxyl Groups and their Sulphur Analogues. Part 1, edited by S. Patal, pp. 175-214. Chichester: John Wiley.

Henrick, K., Matthews, R. W., Podejma, B. L. \& Tasker, P. (1982). J. Chem. Soc. Chem. Commun. pp. 118-119.

Hughes, D. L. \& Truter, M. R. (1983). Acta Cryst. B39, 329-336.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Jeffrey, G. A. \& Vlasse, M. (1967). Inorg Chem. 6, 396-399.
Kawasaki, Y. \& Matsuura, Y. (1984). Chem. Lett. pp. 155-158.
Malmsten, L. (1979). Acta Cryst. B35, 1702-1704.
Paige, C. R. \& Richardson, M. F. (1984). Can. J. Chem. 62, 332-335.
Sheldrick, G. M. (1983). SHELXTL, revision 4.0, January 1983. An Integrated System for Solving, Refining and Displaying Crl'stal Structures from Diffraction Data. Univ. of Göttingen.

Structures of Dibromo[N, N^{\prime}-bis(2-pyridylmethylene)-1,3-propanediamine]copper(II) (1) and Bromo[N, N^{\prime}-bis(2-pyridylmethylene)-1,4-butanediamine]copper(II) Bromide (2)

By Aarne Pajunen and Seija Pajunen
Department of Inorganic Chemistry, University of Helsinki, Vuorikatu 20, SF-00100 Helsinki 10, Finland

(Received 16 May 1985; accepted 20 September 1985)

$$
\begin{aligned}
& \text { Abstract. (1): }\left[\mathrm{CuBr}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{4}\right)\right], M_{r}=475 \cdot 7, \text { mono- } \\
& \text { clinic, } \quad C 2 / c, \quad a=13.286(3), \quad b=9.723(3), \quad c= \\
& 13.234(2) \AA, \quad \beta=107.54(1)^{\circ}, \quad V=1630 \cdot 1(5) \AA^{3}, Z \\
& =4, \quad D_{m}=1.94(3), \quad D_{x}=1.94 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)= \\
& 0108-2701 / 86 / 010053-04 \$ 01.50
\end{aligned}
$$

[^2]
[^0]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters and a space-filling diagram have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42495 (7 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.
 \dagger A further space-filling diagram, highlighting the equatorial coordination of Hg by the six O atoms, has been deposited.

[^1]: * $U_{\text {eq }}$ is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

[^2]: $0.7107 \AA, \mu=65.8 \mathrm{~cm}^{-1}, \quad F(000)=932, T=293 \mathrm{~K}$, $R=0.031$ for 1238 observed $[I>2 \sigma(I)]$ of 1898 unique reflections. (2): $\left[\mathrm{CuBr}\left(\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4}\right)\right] \mathrm{Br}, M_{r}=$ 489.8, monoclinic, $P 2_{1} / c, \quad a=12.142(3), \quad b=$
 © 1986 International Union of Crystallography

